K-theory - определение. Что такое K-theory
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое K-theory - определение

BRANCH OF MATHEMATICS STUDYING RINGS GENERATED BY VECTOR BUNDLES OVER SPACES AND SCHEMES
K theory; K-Theory; Direct image map in K-theory; Real K-theory; Relative K-theory class

K Theory         
K Theory is an electronic hip-hop act by Dylan Lewman, which formerly included Dustin Musser and Malcolm Anthony. The group was founded by Dylan Lewman and Dustin Musser in 2011.
K-theory         
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory.
K-theory (physics)         
CLASSIFICATION OF D-BRANES IN STRING THEORY USING K-THEORETIC TECHNIQUES
In string theory, K-theory classification refers to a conjectured application of K-theory (in abstract algebra and algebraic topology) to superstrings, to classify the allowed Ramond–Ramond field strengths as well as the charges of stable D-branes.

Википедия

K-theory

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

K-theory involves the construction of families of K-functors that map from topological spaces or schemes to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to groups in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include the Grothendieck–Riemann–Roch theorem, Bott periodicity, the Atiyah–Singer index theorem, and the Adams operations.

In high energy physics, K-theory and in particular twisted K-theory have appeared in Type II string theory where it has been conjectured that they classify D-branes, Ramond–Ramond field strengths and also certain spinors on generalized complex manifolds. In condensed matter physics K-theory has been used to classify topological insulators, superconductors and stable Fermi surfaces. For more details, see K-theory (physics).